pigor: ... no to, np. tak : jeśli tylko
cosx≠0 i sinx≠0 (pamietaj co krok o tym dalej), to
| | sin2x | | sin2x−cos2x | |
tan2(x)≤|1−cot2(x)| ⇔ |
| ≤ | |
| | ⇔ |
| | cos2x | | sin2x | |
| | sin2x | | |−cos2x| | |
|
| ≤ |
| ⇔ sin4x ≤ cos4x ⇔ sin4x−cos4x ≤ 0 ⇔ |
| | cos2x | | sin2x | |
(sin
2x−cos
2x)(sin
2x+cos
2x) ≤ 0 ⇔ sin
2x−cos
2x ≤ 0 ⇔ sin
2x ≤ cos
2x ⇔
tg
2x ≤ 1 ⇔ |tgx| ≤ 1 ⇔ −1 ≤ tgx ≤ 1 ⇔ −
π4+kπ ≤ x ≤
π4+kπ ⇔
x∊ <−π4+kπ ; π4+kπ> , gdzie k=±1, ±2 , ±3 ... . ...